Calculus of the solar radiation

For now, please refer to the french version.

Le module photovoltaïque

Maintenant que nous savons quelle énergie reçoivent les cellules photovoltaïques, \(I_{netto}\), examinons comment celle-ci est est transformée en électricité, stockée dans les batteries et utilisée pour alimenter les moteurs des hélices de l'avion.

Chaque transfert et chaque transformation d'énergies le long de cette chaîne est associée à des pertes.

Rendement des panneaux solaires\(\eta_1=\)\(15\,\%\)
Rendement à l'entrée des batteries\(\eta_2=\)\(45\,\%\)
Courant d'obscurité\(I_D=\)\(0,01\,\%\) de la charge de la batterie
Rendement à la sortie des batteries\(\eta_3=\)\(95\,\%\)
Consommation permanente\(I_3=\)\(10\,W\)
Rendement des moteurs\(\eta_4=\)\(95\,\%\)
Pour une énergie fournie par les panneaux solaires de \(I_1=1000\,\), L'énergie incidente sur les paneaux solaires est transformée en électricité selon un remendement \(\eta_1\). $$E_{stockée}\,[J]=I_0 * \eta_1 * Surf_{panneaux} * \eta_2 * \Delta t$$

Sources

  1. 2010: Performance assessment of a simulation model for PV modules of any available technology Mermoud, A. and Lejeune, T. 25th European Photovoltaic Solar Energy Conference - Valencia, Spain, 5-10 Sept. 2010, pdf.
  2. 2013: Personal communications from Christophe Ballif and Samuel Y. Riesen, PV-lab, EPFL, Neuchâtel, Switzerland.

Aeronautics





Technical Aeronautical Specifications HB-SIA HB-Si2
Crew: 1 1
Length: 21.85 m (71.7 ft) 22.4 m (73.5 ft)
Wingspan: 63.4 m (208 ft) 71.9 m (236 ft)
Wing's Surface: 195.5 m2 (2152 ft2) 269.5 m2 (2900 ft2)
Number of Cells: 12'000 17'000
Wing's Aspect Ratio: 19.7
Propeller's Pale Length: 1.75 m 2 m
Oswald Efficiency Factor: 0.96 < 1) 0.96 2)
Zero-Lift Drag Coefficient: 0.029 1) 0.029 2)
Loaded Weight: 1600 kg (3500 lb) 2300 kg (5100 lb)
Motor Power: 4 x 7500 W 4 x 13'500 W
Takeoff's Airspeed: 35 km/h (22 mph) 35 km/h (22 mph)
Battery energy density: 240 Watt-hours/kg 260 Watt-hours/kg
Battery weight: 450 kg 633 kg
1) Values estimated by fitting the aeronautical model to the historical flight data from Solar Impulse.
2) Taken From HB-SIA

Sources




  1. 1949: C. D. Perkins and R. E. Hage: Airplane Performance Stability and Control, John Wiley & Sons, Inc, New York.
  2. 1999: F. Irving: The Paths of Soaring Flight, Imperial College Press.
  3. 2004: R. R. Stengel: Flight Dynamics, Princeton University Press.
  4. 2001: S. H. Koekebakker: Model Based Control of a Flight Simulator Motion System, ISBN 90-370-0194-7, pdf.
  5. 1995: G. J. Hancock: An Introduction to the Flight Dynamics of Rigid Aeroplanes, Prentice Hall.
  6. 2007: A. Tewari: Atmospheric and Space Flight Dynamics, Birkhäuser, Basel.
  7. 1998: M. J. Abzug: Computational flight Dynamics, American Institute of Aeronautics and Astronautics, Education Series, Reston, Virginia.
  8. 2007: M. V. Cook: Flight Dynamics Principles, Elsevier Ltd.
  9. 2003: A Flight Dynamics Model for a Small Glider in Ambient Winds S. C. Beeler, D. D. Moerder and David E. Cox, NASA/TM-2003-212665. pdf.
  10. 2011: J. D. Anderson Jr.: Introduction to Flight, 7th edition, McGraw-Hill International Edition.